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Sound waves of finite but small amplitude propagating into a quasi-steady, 
supersonic flow in a non-uniform duct are analyzed by means of a perturbation 
method. General properties of the flow and of the wave propagation are studied 
using a one-dimensional approximation. A shock propagation law in the un- 
steady flow is obtained. As an example, the formation and development of 
shock waves are discussed for a duct with a conical convergence. Comparisons 
of the theory with an experiment are also made; fairly good agreement is found. 

1. Introduction 
Meyer (1951) investigated one-dimensional, unsteady flow of inviscid gas in 

a duct of slowly varying cross-section. For a small, but finite-amplitude, wave 
propagating into a steady flow, he found distributions of the flow velocity and 
pressure, the asymptotic behaviour of sound waves and the equation for the 
shock path. If a disturbance of finite extent and duration is set up in an originally 
steady, shock-free flow, it generates two primary waves, one advancing with 
velocity u + a and the other receding with velocity u - a, where u and a are the 
velocities of the flow and the sound wave respectively. When the flow is super- 
sonic, these two waves travel in the same direction, i.e. downstream, and, after 
a certain period of interaction, separate from each other to form two wave 
trains. If the duct has a throat where the steady flow is sonic, all receding wave 
fronts entering from upstream are decelerated to approach the sonic throat 
asymptotically, which leads to  the formation of a shock. The analysis of wave 
propagation into steady flow is thus very much simplified if we are concerned 
with the propagation of one or another wave train after they separate. 

However, conditions are different for wave propagation in unsteady flow, for 
which the duration of a disturbance cannot be restricted to a finite time. We 
must necessarily consider the two kinds of waves simultaneously. Moreover, 
for unsteady supersonic flow, deceleration of the flow may be caused not only by 
cross-sectional convergence of the duct but also by time variation of the flow 
quantities. If the flow velocity u* at a given position decreases to the sound speed, 
the velocity of the receding wave vanishes somewhere in the convergence 
downstream. As u* decreases further, the wave turns its direction to propagate 
upstream, leading to characteristic crossing and shock formation. The shock 
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wave thus formed propagates upstream. The propagation is also affected con- 
tinuously by the spatial inhomogeneity and the time variation of the flow. 

Theoretical studies on shock wave propagation in a moving medium have 
been limited to the propagation into the steady flow. Apart from Meyer, Chester 
(1960) has studied shock waves of arbitrary strength using the rule proposed 
by Whitham (1958), and, for the upstream-facing weak shock, he obtained the 

relation 6(6 -A)  = const., 

where 6 is the deviation of the shock Mach number from unity relative to the 
flow, and h is that of the flow Mach number in front of the shock. Propagation 
into a steady uniform flow has been investigated also by Chisnell (1965) and 
Whitham (1968). However, effects of the time variation of the flow on the 
formation and propagation of shock waves were not discussed in detail by these 
authors. 

The present paper deals with wave propagation in a quasi-steady flow in a 
duct of varying cross-section. The flow is assumed supersonic, but with velocity 
only slightly greater than the sound speed by the order of a smallness parameter 
e. Then, the velocity of the advancing wave is of the order of 2a, while that of 
the receding wave of the order of e. In  this case, by means of a perturbation 
method (Asano & Taniuti 1969, 1970), it is found that this difference of the 
velocities enables us to consider the problem in terms of one particular family of 
characteristics, namely those corresponding to receding waves. 

One-dimensional motion of an inviscid, perfect gas is considered and the 
following conditions are assumed: (1) the amplitude of the wave is small but 
finite and (2) the change of cross-section of the duct is small. Physical quantities 
are expanded, about a constant state, as series in the small parameter e,  which 
is so chosen that the series for the cross-section is truncated, and the time 
variation of the flow is specified by tha boundary condition on the flow at a 
position in the duct. Following Asano & Taniuti (1969, 1970) we use a stretched 
co-ordinate et for time, which represents the slowness of the change of the 
physical quantities in time. 

In $ 2, a propagation law of the receding wave is obtained from the fundamental 
equations by the method of characteristics. In  $3,  the law of shock-wave pro- 
pagation is derived and compared with that given by Whitham’s method. As 
an example, the case of a cylindrical duct with a conical convergence is studied 
in $4. Conditions for shock formation in the system are also given. In  $ 5 ,  the 
theory is compared with experimental results for a hydromagnetic plasma. 
The agreement is fairly good. Some related problems are briefly discussed in the 
last section, $6. 

2. Propagation of acoustic waves 
We consider a flow passing through a duct of variable cross-section. l n  the 

one-dimensional approximation, the fluid motion is governed by the set of 
equations: ap apu I d s  -+- +---pu = 0, 

at ax s d x  
( 2 . 1 ~ )  
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au au ap 
at ax ax p-+pu-+- = 0, 

aw aq ids 
-+-+--q= 0) 
at ax s dx 

( 2 . l b )  

( 2 . l c )  

where the x axis is directed along the axis of the duct, whose cross-section is 
denoted by s. The notations are usual ones; that is, p, u and p are the mass 
densit'y, the flow velocity and the pressure respectively, w and q are the energy 
density and its flux given by the equations 

( 2 . 1 4  

here y is the adiabatic constant. The energy conservation equation ( 2 . 1 ~ )  is 
reduced to a simpler form by substituting ( 2 . l a ) ,  (2 . lb )  and ( 2 . l d )  into ( 2 . l c ) ,  i.e. 

ap ap au ids  
-+u-+yp-+---up= 0. 
at ax ax a d x  

(2.1 c)' 

Hence, we may take ( 2 . l a ) ,  ( 2 . l b )  and ( 2 . 1 ~ ) '  as the fundamental equations. 
Intxoducing a column vector U through the equation 

q+AU,+(l/s)s,B = 0, (2 .2a )  

where the subscripts t and x denote partial differentiation with respect to t and 
x respectively; A is a matrix of the form 

A = F 0 YP u ' / p ] ,  

and B is the column vector 

(2.2b) 

(2.2c) 

If the duct is uniform, i.e. s, = 0, (2.2a) admits a solution with constant state, 
say U,. Let U be expanded about U, as a series in a small parameter. The shock 
wave is supposed to be formed when the flow velocity becomes nearly equal to 
the sound velocity and we take U, as a state where u is equal to the sound 
velocity a,, = (ypo/po)*, that is, 

u, = (2.3) 

In the steady state, the deviation of U from U, essentially depends on the 
change of the cross-section. This can be seen most easily by the well-known 
relation (Liepmann & Roshko 1960) 

F L M  46 
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where M is the Mach number of the flow. For the variation of Mach number 
when nearly equal to unity, the relation yields 

1 as dMcc------. 
M - 1  s 

This equation suggests that, if the variation of the cross-section is of the order 
of e2, the changes of the fluid quantities are of the order of B for M nearly equal 
to 1. Hence, if the variation of the cross-section s is given by the equation 

s = SO+€2S1, (2.5) 

U is expanded as a series in powers of 8, that is, 

u = u,+€u,+€~u~+ .... ( 2 . 6 ~ )  

Other quantities that are functions of U can be expanded also as 

I A = A,+eA1+ ..., 
B = B,+€B,+ ..., 

(2.6b) 

where A,  a,nd B, are the respective values of A and B at U = U,. 
As was stated in $1, we seek a solution to represent the receding waves, 

which travel with the velocity u-a.  Since u, is put equal to a,, the order of 
magnitude of the velocity u - a is E .  Since dxldt = u - a N O(e) ,  we introduce a 
new variable 7 so as to give the relation dx/dt N O(e) dxldr, where dxldr is of the 
order of unity, that is, 

In  other words, we consider a system which varies slowly in time, such that 
the characteristic time for a disturbance to propagate is L/(u- a )  - e-l(L/a,M,), 
where L is the characteristic length of the system and M,, which is of the order 
of unity, is defined by the equation M = 1 + eMl + . . . . 

Substituting (2.3)-(2.7) into ( 2 . 2 ~ )  and equating coefficients of equal power, 
we obtain for the first order of e 

r = et. (2.7) 

AOU,, = 0, 
and for the second order 

and so on. From these equations, we can determine U, as follows. 

det A,  = 0, which is satisfied automatically by virtue of the relation 

%2 - 2 

In  order that the non-trivial solution of (2.8) exists, it is required that 

0 - a0 = W O / P O .  

Let r be a right eigenvector of A ,  corresponding to the eigenvalue zero. !I!hen, 
the general solution of (2.8) is given by 

u, = ru,+ V(7) ,  (2.10) 
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where El is an arbitrary function of x and 7 to be determined later, whence V(7)  
is an arbitrary vector-valued function of 7 only, that is, 

V l ( 7 )  

V = v2(7) , 6,,1 
r =  [ -::I. 

and will be determined by boundary conditions on Ul and El .  As the representa- 
tion for r ,  we use, hereafter, 

- YPO 
The boundary condition on Ul may be given by the value of Ul at a point, say 
xc, as a function of 7, i.e. U1(x,,7). For the function Bl, a convenient condition 
is to put a,Bl (xc, 7) equal to u1 (xc, 7) which makes v2 (7) vanish identically by 
means of the representation of r given above. Then, from (2.10) evaluated at 
x = xc, v is given by 

(2.11) 1 Vl(7) = Po{% (xc, 7) + F l @ C ,  711, 
v2(7) = 0, 
03 (7) = 3/110{%(% 7) + (llr) P1 (xo 711, 

where the overbars denote dimensionless quantities ; namely p1 (x, T), U1 (2, 7) 

and p1 (x, 7) are the density, the velocity and the pressure normalized by po,  a, 
and p o  respectively. Substituting (2.11) into (2.10) yields 

(2.12) I F1 (x, 7) = A(%, 7) - {El (x, 7) - @1(xc, T)}, 

Fl (x, 7) = P1 ( x c ,  7) - Y(U1 (x, 7) - U1 ( x c ,  .)>. 

For further discussion, it is convenient to express pl, U1 and p1 in terms of Nl. 
Expanding the sound velocity a as a = a,+eal+ ... and noting the relation 
6, = al/ao = i(p1-Fl), we have, from (2.12), 

M1(x,7) = U1-Z1 

= Q(r + 1) {El (x, 7) - El (xc, 7)) + 4 (xc ,  7), 

or F1 (x, 7) = P1 (xc, 7) - P / ( Y  + 1)1{Ml (x, 7) - Ml (xc, 7)>, 

U, (x, 7) = Z1(xc, 7) + P/(r + 1)1 {Ml (x, 7) - Hl (xc, T)}, 

131 (x, 7) = 91 (xc, 7) - P Y / ( Y  + 1)1 {Ml (x, 7) - j K ( x c ,  7)}. 

( 2 . 1 3 ~ )  

(2.13 b )  

(2.13 c) 
- 

and 

Hence our problem is reduced to one of obtaining MI (x, 7). 

zero, i.e. 1 = (Qa& 3'a,/(y-- l ) ,  - 1) (Asano & Taniuti 1969, 1970), we have 
Multiplying (2.9) by a left eigenvector I of A,  corresponding to the eigenvalue 

(2.9)' 
- 

ZrUIT + Zr . (V, A),rZ1 B,, + Z V . (V, A),rulZ + ZV, + ( l/s,) slz ZB, = 0, 

where we have used (2.10) and the relation 

4 = 01 * ( V d ) ,  = P1 (aA /aP)o  + u1 (aAla40 +Pl(aA/aP),. 
The equation for Nl is easily obtained from (2.9)' and (2.13) as 

M,+a,M,M,,-F(7) --a(?+ l)a,(s~,/so) = 0, (2.14 a)  
8-2 



The equations (2.14) can be solved by means of the method of characteristics; 
on each characteristic curve 

the variation of M, is given by 
dx/dr = u,, M,, (2.15 a) 

dM, = F ( r )  dr  + B(y + 1)  (ao/so) (ds,/dx) dr 

= W )  + [ ( y  + 1 )/4M11 ds,/s,, (2.15 b)  

where ds, is the change of the cross-section experienced by the sound wave, i.e. 
ds, = (ds,/dx) aoMldT. The set of equations (2.15) is an extension of the relation 
(2.4) to the non-stationary case for the small variation of Mfrom unity ihnd is 
integrated to give 

1 ' d s  
M,(r) = Ml(r,) +I' F ( r )  dr + $(y+ 1)  aoT/ dr, (2.1Ga) 

T e  0 T C d X  

r r  
(2.16 b )  

where r, is the time a t  which each characteristic curve issues out of the position 
x = xc. 

For steady supersonic flow, the relation (2.4) implies that the flow is accelerated 
in a diverging duct for which dsldx > 0. However, for the flow whose Mach num- 
ber decreases a t  the place x = xc, i.e. F(r)  < 0, equation (2.15b) shows that the 
flow may be decelerated even if dsldx is positive ; thus, the boundary conditions 
play an important role in shock formation, as will be shown in the following 
sections. 

3. Propagation of shock waves 
The characteristics determined by (2.15) may cross each other after finite 

time to form a discontinuity, which propagates as a shock wave under certain 
conditions. The shock propagation in an inhomogeneous medium is governed by 
Whitham's rule which comprises the shock condition and the characteristic 
relation. However, as far as the propagation of weak shocks is concerned, one 
may work on the weak extension of (2.14). Since (2.14a) can be written in the 
form of a conservation law, the jump condition for weak shocks is obtained by 
applying Gauss's theorem to that equation (Jeffrey & Taniuti 1964) as 

2M = M,,+M,,, (3.1) 

along the shock trajectory. Here, subscripts f and b denote the quantities just 
in front of and behind the shock respectively and M, is the shock Mach number 
defined by 

It is to be noted that the relation (3.1) is an approximation of the exact jump 
condition. We now show how the shock trajectory can be determined from (3.2). 

dx1d.r = a,M,. (3.2) 
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Eliminating 7, from (2.16) yields the Mach number 

MI = Ml (x ,  7 )  (3.3) 

for any x and r except those on the shock trajectory, and hence the Mach 
numbers Mlr and Mlb are obtained from (3.3) evaluated just in front of and 
behind the shock trajectory (3.2). Thus substituting (3.1) and (3.3) into (3.2),  
we have the equation 

d4d.r = p l f  ( x ,  4 + Nlb (x, TI), 

which gives the shock trajectory if it is solved for x in terms of r.  
For discussion of the properties of the shock wave, however, it may be more 

convenient to give the variation of the shock Mach number along theshock 
trajectory (3.2). To this end, let us divide the change of M, along the shock 
trajectory into that along the characteristics ( 2 . 1 5 ~ )  and that away from the 
characteristics. This can be achieved easily by means of the transformation of 
the independent variables from x , r  to 7,7c,  and is easily carried out by the 
Jacobian formulae, 

Using these formulae, we have 

and 

( 3 . 4 ~ )  

(3.4b) 

Hence the variation of the Mach number along the shock trajectory, AM,, is 

where Ax  and Ar denote the respective variations of x and r along the shock 
trajectory 

AxlAr = a, M,. 

It is obvious that the measure of Ar can be chosen arbitrarily. The first term 
(aM,/ar)7c in the bracket on the right-hand side of (3.5) is the variation of M, 
along the characteristics whilst the next term represents the variation in a 
direction away from the characteristics. Since the shock condition (3.1) gives 

(3.7) 

(3.6) 

2AM, = AMlf + AMlb, 
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substituting (3.5) into (3.7) yields the desired decomposition of AMs: 

Since further discussions of (3.8) in general form seem to be complicated, we 

The conditions of the steady flow are represented from (2.14b) and (3.4) as 
study, as an example, the shock propagation in a steady flow. 

P(7) = 0 

and 

Then, (3.5) and (2.156) yield 

(3.9) 

Hence, substituting (3.9) into (3.7) gives 

which, by virtue of (3.1) and (3.9)) can be integrated to give 

Ms(Ms-Ml,) = const. (3.10) 

It is easy to see that the relation (3.10) reduces to  Chester’s (1960) one, if use is 
made of the Mach number relative to the flow in front. FolIowing the original 
form of Whitham’s rule, Chester applied the differential relations along the 
characteristics dxldt = u + a to the flow quantities just behind the shock wave. 
Since we consider only the characteristics dxldt = u-a ,  there is no exact 
correspondence to Chester’s derivation, The last equation in (3.9), however, 
shows that the variation of Ml along the shock path has the same form as that 
along the characteristics (2.15b)) being essentially the same as the result ex- 
pected from Whitham’s rule. 
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4. Shock formation in an axisymmetric duct with a convergence 
In  this section, using the general results obtained so far, we discuss the shock 

formation in an axisymmetric duct with a conical convergence and illustrate 
how the boundary condition works for the formation and propagation of the 
shock wave in the system. 

+ I +  

FIGURE 1. The axisymmetric duct with a conical convergence used in the analysis. 

Let the radius of the cylindrical part of the duct be r ,  the open angle and the 
length of the cone be 28 and 1 respectively, as shown in figure 1, and 0 is assumed 
to be sma,ll. The x axis is directed along the axis of the cylinder, with the origin 
at the entrance of the convergence. Then, the cross-section s is given by 

( x  < O ) ,  
(0  < x < I ) ,  

s, = so (1  - O(Z/r))z ( x  2 I ) .  

The second equation becomes, to the first order in 8, 

s = ~ ~ - 2 n - r ~ ~  = s0+~2s1(x) ,  

where E is defined by E = 84 to give 

s1 = -2nrx. (4.1) 

For simplicity the boundary condition is given at the entrance of the con- 
vergence such that the flow velocity, the density and the pressure are decreasing 

(4.2) 

linearly in time : i4 ( 0 , ~ )  = F’? - m,, 7, 
u1(0,7)  = E!-rnUT, 

where p j ,  i i y ,  1301 and m’s are positive constants. The Mach number Nl a t  the 

I - 

1)1(0,7) = Py-mpT, 

entrance becomes N1(O,7) = mo-m’,, 

here m, is the Mach number at  T = 0 and given as 

1120 = %-$(P!-X) 
and P P  m’ = mu-&(m -m ). 

(4 .34  

(4.3b) 

(4.34 
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In  general, m' may be negative, that is, the Mach number may increase even if 
the flow velocity decreases. 

Substituting (4 .1) - (4 .3)  into (2 .14b)  and (2 .15b)  with x, = 0, we have, along 
the characteristics (2 .15a) ,  dM, = ndr 

or MI = n(r - 7,) + M,,, (4 .4 )  

where n is a constant which, in the region 0 < x < I ,  takes the value 

and MI, is the Mach number at  r = r, 

M,, - m, - m'r,. 

Since we consider the case of decelerating flow, we assume n to be negative. 
By virtue of (4 .4 ) ,  (2 .25a)  is simply integrated to yield 

or 

x = ~aon(r-rc)2+aoMl, (r -rc)  

= a, (r - 7,) (m, - tn'r, + ;n7), 

x = (a012n) (M2, - ME?), 

where n' is a constant defined by 

n' = n + 2m' 

y+' (mu-7mp) 1 -- Y + l  a,,. 
2r 

= m'i,- (4 .7 )  

In  the present case, the characteristics are parabolic curves with r, as a para- 
meter to specify each curve. The starting-point of an envelope of these curves, 
if it exists, represents the formation of a shock wave. The initial shock velocity 
is approximately equal t o  MI at this point because, in the neighbourhood of 
this point, Mlr is almost equal to Mlb, and hence to M,, as will be shown later. 

It is easy to see that the curves (4 .6 )  form an envelope 

x = - (aO/2n') (mo - m'r)2. (4 .8 )  

Hence t h o  necessary condition for shock formation in the convergence is 

n' < 0. (4 .9 )  

The physical meaning of this condition is seen from the definition of n', (4.7); 

n' = dM,/dr - 2(aM1/ar),=,, since n' is rewritten as 

the condition (4 .9 )  is equivalent to 

The quantity on the left-hand side of this inequality may be interpreted as the 
change of the Mach number due to the convergence of the duct. Hence the 
inequality means that, if m' is positive so that M, is decreasing at  the entrance, 
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the rate of decrease of the flow Mach number due to the convergence is larger 
than that at  the entrance. Thus, rapid decrease of the flow velocity at  the entrance 
will delay the shock formation downstream. 

Hereafter we consider only the case n‘ < 0 and m’ > 0 -the flow Mach number 
decreases at the entrance of the convergence. Since n is also negative, character- 
istics (4.6) imply that there is a critical characteristic curve which is tangential 
to the line x = I, the exit of the convergence. This critical characteristic curve is 
specified by the parameter r, = r:, 

7; = (l/m’)(mO-2()nJ Z/a0)i), 

and the corresponding Mach number at  the entrance is 

Mi,  = nto-m’r; 

= 2( 1.1 la,)*. 

I 
I 
I 
I 
I 

\ i  \ 

I 
I 

TC 

0 

71 

I 
I 
I 

( 4 . 1 0 ~ )  

(4.1 Ob) 

I 

FIGURE 2. Flow diagram showing the formation and the motion of the shock wave. 
The shock wave is formed at P m d  propagates dong the curve S. j and b denote the  
charact,oristics in front of and bohind the shock respectively. The envelope of the eharac- 
teristics for 7, >, 7; is represented by the dotted curve e if the shock trajectory s is nbscnt,. 
The broken curve a denotes tho sonic line. 

When the flow Mach number at  the entrance is large enough, disturbances to  
the flow pass through the convergence and a super-super transition is realized, 
but, as the Mach number decreases to MI,, the deceleration due to the conver- 
gence becomes effective and waves cannot pass through, leading to charactsrist,ic 
crossing. The existence of such a critical Mach number has been shown by 
Hamada, Kawakami & Sat0 (1968), though the value obtained differs a little 
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from ours. The characteristic crossing occurs a t  a tangent point of the envelope 
(4.8) and the critical characteristic. In  figure 2, the tangent point is denoted by 
P, the co-ordinates of which are given by 

xp = 4n'n/(n'+n)2, (4.1 1 a )  

T~ = 2(n'~:-rno)/(n'+n). (4.11b) 

It is to be noted that xp tends to 1 as m'+O; that is, the position of the shock 
formation tends to the exit of the duct as the flow becomes steady. Since the 
shock wave is formed at x = xp and t = t p  and propagates upstream, character- 
istics with T ,  > T: and T ,  < TL. become, after the time tP, those in front of and 
behind the shock respectively. Thus, the characteristics (4.6) and the Mach 
number (4.4) represent xj and Mlt respectively, while x b  and Mlb are obtained 
from further integration of (2.15) into the region x I and successively into 
the region 0 < x < 1, as shown in figure 2. 

In  order to determine the shock trajectory by means of the relation (3.11, the 
distributions of MI in space-time must be known. The flow Mach number in 
front of the shock is easily obtained by eliminating T ,  from (4.4) and (4.6): 

(4.12) 

After some calculations, we find the characteristics and Mach number behind the 
shock given by 

x = (ao/2n) ( M f  - MfJ, (4.1 3 a) 

and MI = n ( ~  - T ~ )  + MI,+ 2[(n/rL) - 11 [M?, + (%d/ao)]*, (4.13 h )  

respectively, where ?i is a constant corresponding to n for x 2 1: 

?i = limn 
r - m  

= -m'+$(y+ 1) (mU--(1/y)mp). 

The characteristics that first form the discontinuity are specified by T, z T: 

or M,, g M i ,  = [21nlZ/uo]f, hence, by virtue of (3.1), (4.13), (4.4) and (4.6) yield 
Mlr z MI, g M,; that is to say, the shock trajectory is represented by the 
characteristics with T, g T:. On the other hand, for T,  < T:, we have 

Consequently the distribution Mlb (x, T )  given by (4.13) takes the form 

where we put 6 = 2[ (n /E )  - 11. 
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By means of (3.1), (4.12) and (4.14), (3.8) is easily integrated to give the shock 
trajectory for r 9 rp, x = K(mo - m’T)2, ( 4 . 1 5 ~ )  

where K is a constant determined by the equation 

(4.15b) 

Comparing (4.15) with (4.8), we find that the shock trajectory is close to the 
envelope when the shock is weak. In  figure 2, the shock trajectory is represented 
by a bold line, Broken lines in the figure show the forward and backward sonic 
lines, the former obtained from (4.12) with the condition Mlr = 0, i.e. 

n x = -  a (w~O-m’r)~, 
2(n + m)z O 

while the latter takes the form for x 2 1 

So far we have considered that the Mach number at the entrance of the con- 
vergence decreases from a sufficiently large value in the remote past. The Mach 
number at  the entrance may, of course, be specified as constant for rC < r: 
provided that it is larger than Nlc. If it is a constant smaller than Mlc, the 
initial-boundary-value problem under consideration is not well posed, because, 
in this case, shock waves are necessarily formed in the remote past and propagate 
upstream. 

5. Comparison with experiment 
The present work was motivated by the B.S.G. project (Uchida et al. 1965, 

1968, 1969) for plasma heating, at the Institute of Plasma Physics, Nagoya 
University. Conceptional profiles of magnetic lines of force in the system are 
depicted in figure 3. Ionized gas is produced by a theta pinch located at  B and 
expands into S. In order to decelerate the plasma flow a magnetic mirror is set 
up a t  the centre or the end of S. Following the reference cited, we call these 
positions of the magnetic mirror X V and S VIII respectively. Under the experi- 
mental conditions, the plasma can be considered collision dominated. Further- 
more the magnetic pressure is much higher than the mechanical pressure so 
that the magnetic field is not appreciably disturbed by the injection of the 
plasma. Hence the time variation of the magnetic field may be neglected; the 
lines of force act as a solid wall. A phenomenological theory of this experiment 
was established by Leloup & Taussig (1968). They showed that the essentially 
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non-stationary stage, where the flow expands into S and its state changes 
swiftly in time, is followed by a quasi-steady stage for which the flow states at  
the entrance of the mirror field can be considered as slowly varying in time. 
From the experimental data, one sees that the boundary condition may be 
represented by such linear functions of time as equations (4.2). These results 
enable us to apply our theory to investigate this experiment. 

SV SVIII . 
\ 

\ \ '_-- '-- - 

I---- /---- 

I 
I / 

c - 0  

B S 

FIGURE 3. Sketch of the B.S.G. device. The curves represent the magnetic lines of force. 
The magnetic mirror is set up a t  S V  or SVIII,  as depicted by dotted linos. 

We compare our theory with the experiment in respect of (1)  the shock 
formation time t,, ( 2 )  the initial shock velocity 6 and (3) the critical flow Mach 
number for the shock formation ML. The experimental data give these quantities 
as functions of the mirror ratio, the ratio of the magnetic field strength a t  the 
neck of the mirror to that at the homogeneous part S. Hence, for the comparison, 
the relation between the mirror ratio, say R, and the parameter e is required. 
The angle 8 is defined from the profile of the line of force. Noting that the mirror 
ratio was changed while keeping the S field constant, we have 

€ = 03 

= ( r /@ (1 - I--&)&, (5.1) 

where we have used the conservation law of the magnetic flux and approximated 
the mirror field by a cone of the form shown in figure 1. From the design of the 
experiniental device, we find rll 6 0.3 which yields e2 5 0.14 for R 6 6, and 
hence the theory can be applicable. 

( 2 )  From (2.7), (4.11b) and (5.1), we have 

Here we note that K ,  is a constant independent of R. The shock formation 
times at  S V and S VIII  are shown in figure 4. The origin of the time axis is 
adjusted so that the shocks at S V and S VIII  are formed at  the same time for 
R = 5.8. The theoretical curve is also adjusted to fit the data at  the same $2. 

(2) Since the initial shock velocities are not observed experimentally we 
identify the constant shock velocity measured at S with the initial shock velocity. 
The values of the initial shock velocities thus determined are shown in figure 5. 
On the other hand, the present theory yields the initial shock velocity 5 in the 
laboratory system, i.e. in the x - t plane, as 
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where iqi is the initial shock Mach number in the laboratory system. By virtue 
of the relation HI (7p, 7:) = n(TP  - 4 +Mi,  

the velocity can be rewritten as 

q = K,ah (1 - R - q ,  

300 r 
(5 .3)  

100 
1 2 3 4 5 6 

R 

FIGURE 4. Shock formation time as a function of the mirror ratio. Theory gives the 
curve, which is fitted to the data at  R = 5.8.  x , S V; 0 ,  S VIII. 

where K ,  is a constant. Since the times a t  which the plasma reaches S V and 
S VIII  are different from each other, the temperatures and hence the sound 
velocities at S V and X VIII  are different a t  the time of shock formation. Hence 
the difference of the initial shock velocities at S V and S VIII  is due to that of 
the boundary condition. Let the sound velocities at X V and at  S VII I  be a,, 
and aOVIII respectively. Then from ( 5 . 3 )  the ratio of these two sound velocities 
is given by that of V:, which, by means of figure 5, can be estimated as 

-- - 1.55. 
aov111 

Consequently, the corresponding ratio of the temperature is about 2.40. The 
theoretical curves are fitted to the data at R = 5-8 in figure 5 .  

(3) By virtue of (4.10b) and (5.1), the critical Mach number &Ti of the flow 
takes the form a; = 1+eM;, 

= 1 + K,a$ (1 - R-t)t ,  

where K,  is another constant. Observed values and the theoretical curves are 
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presented in figure 6 ,  in which the constant K3/a&, is adjusted to give the 
observed Mach number at R = 5.8 and use is made of the ratio aov/aovILI given 
above. Since the present theory is valid for @: 5 2,  the discrepancy for ME > 2.5 
is an expected one. Thus the agreement of the theory with the experiment is 
fairly good within the approximation. 

1 .o 1.0 - 

0 I I 1 I I 
1 2 3 4 5 6 

R 

FIGURE 5. Initial shock velocities as functions of the mirror ratio. Theory gives 
curves, which are fitted to the data at R = 5.8. x , S V; , S VIII. 

1 2 3 4 5 6 

R 

FIGURE 5. Initial shock velocities as functions of the mirror ratio. Theory gives 
curves, which are fitted to the data at R = 5.8. x , S V; , S VIII. 
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FIGURE 6. Critical flow Mach numbers as functions of the mirror ratio. The curve 
for a, = a,, is fitted to  the data at R = 5.8. x , S V; 0 ,  S VIII. 
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6. Discussion 
In  this section some problems related to the present theory are discussed. 

First, in our calculation we have dealt with one type of characteristic curve 
corresponding to the receding wave only. Here we show the justification for 
neglect of the other characteristics. 

Using the variables defined by (2.7) and the expansions 

u = ~ , + E U ~ + E ~ U ~ + . . . ,  

a = ao+cal+s2a2+ ..., 
one can easily see that the characteristic curves dxldt = u + a  become for the 
advancing characteristics C+ 

~ d x f d ~  = 2a, + €(a1 + a,) + . . . 
and for the receding characteristic C- 

s d x l d ~  = s(ul-al)+ .... 
Thus C- gives the equation obtained in 92, while’C, has the gradient 2a,/e, 

which implies an almost instantaneous propagation of signals. This is reflected 
in the term F(7)  in (2.14) which means that the disturbances at  the boundary 
propagate with a,n almost infinite velocity. 

The method of determining the shock-propagation law given in $ 3  could be 
extended to  the case of strong shock waves because (3.6) is valid also for strong 
shocks if we replace Ml by M and a. by a, provided that the states in front of 
and behind the shock can be expanded about the respective constant states. 
Finally, it may be noted that the present theory is based upon the expansion 
about a constant state but the expansion about an arbitrarily steady state is 
possible (Asano 1970). 

The author would like to express his sincere thanks to Professor T. Taniuti for 
many of his ideas incorporated in this work and for continual guidance through- 
out the course of the study. He is also deeply indebted to Professor J. Fujita 
and Dr K. Adati for communicating the experimental results and for valuable 
discussions. 
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